Droplet migration characteristics in confined oscillatory microflows.

نویسندگان

  • Kaustav Chaudhury
  • Shubhadeep Mandal
  • Suman Chakraborty
چکیده

We analyze the migration characteristics of a droplet in an oscillatory flow field in a parallel plate microconfinement. Using phase field formalism, we capture the dynamical evolution of the droplet over a wide range of the frequency of the imposed oscillation in the flow field, drop size relative to the channel gap, and the capillary number. The latter two factors imply the contribution of droplet deformability, commonly considered in the study of droplet migration under steady shear flow conditions. We show that the imposed oscillation brings an additional time complexity in the droplet movement, realized through temporally varying drop shape, flow direction, and the inertial response of the droplet. As a consequence, we observe a spatially complicated pathway of the droplet along the transverse direction, in sharp contrast to the smooth migration under a similar yet steady shear flow condition. Intuitively, the longitudinal component of the droplet movement is in tandem with the flow continuity and evolves with time at the same frequency as that of the imposed oscillation, although with an amplitude decreasing with the frequency. The time complexity of the transverse component of the movement pattern, however, cannot be rationalized through such intuitive arguments. Towards bringing out the underlying physics, we further endeavor in a reciprocal identity based analysis. Following this approach, we unveil the time complexities of the droplet movement, which appear to be sufficient to rationalize the complex movement patterns observed through the comprehensive simulation studies. These results can be of profound importance in designing droplet based microfluidic systems in an oscillatory flow environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Investigation of Inertial Mixing in Colliding Droplets

Achieving the increasingly fast mixing requirements posed by the chemical, biological, and life science community for confined microchannel droplet flows remains an engineering challenge. The viscous and surface tension forces that often dominate microflows undermine fast, efficient mixing. A novel mixing arrangement based on droplet collisions has been developed that significantly improves mix...

متن کامل

Solvation Force of Ellipse-Shaped Molecules Moving in One Dimension and Confined between Two Parallel Planar Walls

     The model fluids containing hard ellipses (HEs) and Gay-Berne (GB) particles where their center is moving in one dimension and confined between two parallel walls with different interactions are investigated using Monte Carlo simulation, NVT ensemble. The dependency of fluid pressure with respect to the wall distances is studied. The oscillatory behaviors are seen in this quantity against ...

متن کامل

Effect of Bubble/Droplet Morphology and Slippage on Attachment Induction Time in Deoiling Flotation Process

A modified model has been analytically developed to describe the induction time of an elliptic air bubble in contact with an elliptic hydrophobic oil droplet. The role of hydrophobicity was revealed in the slippage of liquid over the surfaces of bubble and droplet. In this condition, the analytical relationships for pressure distribution and consequently hydrodynamic resistance force through th...

متن کامل

Attraction, merger, reflection, and annihilation in magnetic droplet soliton scattering

The interaction behaviors of solitons are defining characteristics of these nonlinear, coherent structures. Due to recent experimental observations, thin ferromagnetic films offer a promising medium in which to study the scattering properties of two-dimensional magnetic droplet solitons, particle-like, precessing dipoles. Here, a rich set of two-droplet interaction behaviors are classified thro...

متن کامل

Wettability and Coalescence of Cu Droplets Subjected to Two-Wall Confinement

Controlling droplet dynamics via wettability or movement at the nanoscale is a significant goal of nanotechnology. By performing molecular dynamics simulations, we study the wettability and spontaneous coalescence of Cu droplets confined in two carbon walls. We first focus on one drop in the two-wall confinement to reveal confinement effects on wettability and detaching behavior of metallic dro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2016